
THE DATA ARRAY, A TOOL TO INTERFACE j

THE USER TO A LARGE DATA BASE

0 t4

< "I

Ot

Goddard SpaceH. Foslight Center

NATIONAL TECHNICAL

Electrical and Computer Engineering Department oL Commerce

Syracuse UniveSpringfieldty, Syracuse, N.Y. 13210225

Greenbelt, Maryland 20771



ABSTRACT

This report considers some aspects of the processing of space-

craft data and advocates the use of the data array in a large address

space as an intermediate form in data processing for a large scientific

data base. Techniques for efficient indexing in data arrays are reviewed

and related to the data array method for mapping an arbitrary structure

onto linear address space is shown, and a compromise between the two

forms is given. Finally, some of the impact of the data array on the

user interface and the implementation are considered.

PAGE LANK NOT FLMED

ii



ACKNOWLEDGMENT

The author would like to thank J. Boroumand and S. Hersh

who provided some of the programming to support this effort.

To Mr. G. E. Hoernes of the International Business Machines

Corporation goes credit for the term multi-linear files. His

interest in this problem should lead to additional material in

this area.

iii



TABLE OF CONTENTS

1.0 INTRODUCTION . .................. . 1

2.0 MODELS FOR TELEMETRY DATA PROCESSING . ....... 3

2.1 Background . ................. . 3

2.2 Data Structures and Arrays ........... 7

2.3 An Array Model . ............... . 9

2.3.1 Commutation . ............... . 11

2.3.2 Supercommutation. .......... ... . 13

2.3.3 Subcommutation . ............... 14

2.4 Multi-Linear Files . .............. 15

3.0 STORAGE MAPPING FUNCTIONS . ............. 16

3.1 Arrays and Indexing in APL . ........ . . 17

3.2.1 Hassitt and Lyon's Approach to Indexing . . . 20

3.2.2 Discussion . ................. 30

3.3 Other Storage Mappings . ............ 31

3.4 Arrays of Structures . ............. 34

3.5 Application of Structure Mappings to the 38
Array Model . . . . . . . . . . . . . . . . .

4.0 THE USER-DATABASE INTERFACE . ............ 42

5.0 IMPLEMENTATION CONSIDERATIONS . ........... 49

iv



TABLES

1 Processing Functions, pummarized . ..... . . . . . . . . 5

2 A Tabular Description of a Structure . .... . . . . . . 32

3 Q and M Appended to the Tabular Form of a Structure .... 33

FIGURES

1 INDEX and Ancillary Functions ......... . . . . . 21

2 INDA and POP . . .. . . . . . . ..................... . 25

3 INDB and EVAL . . .. ............. . . . . . . . . . . 27

4 INDC . . . . . . .. . . . . . .......................... 28

5 The Structure Mapping Function, SMF ........ . . . . 34

v



1.0 INTRODUCTION

This report considers some aspects of the problem of interfacing a

community of scientists to a very large data base. The primary assumptions

are that: (1) Little is to be done concerning the collection and size

of the raw data base; (2) Minimal burden should be placed on altering

the scheme of intermediate data processing requirements or projections;

(3) The types of data bases to be considered are such that archival

system technologies probably will be pushed to the state of the art to

accommodate the data base; (4) Output processing and the users point

of view of the data base(s) would be the focal point of the material

considered here in although there are implications in the earlier phases

of the process.

The material which follows is apportioned as follows: Section 2

considers a somewhat simplified view of the data processing task; and

the homogeneous, n-dimensional array, where each coordinate index is

considered orthogonal to the others, is offered as a model for such data.

The cases of commutation, sub-commutation, and super commutation as a

part of the array data model are considered and the role of arithmetic

progressions in describing these activities is explored. In this section,

as well as the material to follow, the notation of A Programming Language

(APL) is used to present the results and the algorithms. The reasons

for this are that: (1) APL deals naturally with arrays such as con-

sidered here and the indexing properties of APL are very general;

(2) some of the programs to be considered here were first published in

APL and it is a natural notation for presenting those and other algorithms

I



here; and (3) APL is suitable for describing mathematical constructs,

modelling programming in many high level languages, and describing oper-

ations which can take place on the machine level.

A working knowledge of APL is thus assumed. While references [1]

and [2] are the usual one cited, for the purposes considered here the

beginner should probably start with [3] or [4] and use [2] as a reference.

Section 3 considers the n-dimensional array and reviews the re-

quirements for mapping this regular structure onto linear address space.

What is known about efficient implementation of indexing in APL-like

arrays is presented next and related to the commutation results and

data array indexing given earlier. The structure such as found in pL/l

or COBOL is shown to be a generalization of the array and it is consider-

ed next. A function for mapping such structures onto linear address

space is given in APL. This algorithm calculates the addressing parame-

ters for an arbitrary structure. By restricting the form of a structure

we arrive at a generalization of the array which has utility in the

problem under study having addressing parameters that are less compact

then those used in an APL array, but more compact than those used in

mapping an arbitrary structure.

Section 4 deals briefly with the user/data base interface. Choices

here depend on what is to be optimized and the constraints of the problem,

profile of data access requests, machine architecture of the output and/

or retrieval processors and other factors which can not be adequately

dealt with in this report affects such considerations. Accordingly,

trends are noted, and possible choices are outlined.

2



The final section deals with some observations regarding machine

structure since the scope of this effort precludes a more complete

design effort, the salient points of view of this effort are reflected

into machine characteristics which would tend to make an approach such

as suggested here more feasible.

2.0 MODELS FOR TELEMETRY DATA PROCESSING

2.1 Background

The nature of the data processing requirements and workload at

Goddard Space Flight Center strongly impacts the interface between the

user and the data base(s) of interest to him. First, the sheer volume

of data produced by each spacecraft, not counting the total volume of

data from all spacecraft, places the problem on or near the leading edge

of technology. The second factor comes from the fact that the data

processing task associated with telemetry data processing, the step

prior to solving the user data base interface, is itself a computationally

robust problem.

To seek a model into which we may cast the data base problem we

assume that each spacecraft has a number of digital sensors the values

of which are measured in a position-time sequence designed for that

spacecraft's payload. A number of data words are transmitted, together

with patterns to assist in synchronization and recovery of information

in the face of noise, as a frame of data.

The data is transmitted to a number of ground stations which forward

it via the NASA Communications Systems (NASCOM) to Goddard. Table 1

3



summarizes how we choose to categorize computational activity beyond

this point. It is likely that this table neither reflects all steps of

telemetry processing for all present day satellites nor does it quite

have divisions of activity phases which reflect trends at GFSC. The

groupings chosen were primarily taken from descriptions given in reference

[5, 6] and to some extent [7]. These steps do not reflect the activity

that would be considered data reduction, interpretation and/or analysis

such as might be described in [8] and used for quick-look or more ex-

tensive analysis.

Past practice has found that step 4 of Table 1 was essentially the

writing of a master tape. Step 5 was the simultaneous decommutation of

all experiments with a tape being prepared for each experiment (or

perhaps for each experimentor if a team were working on a single task).

Of course the simultaneity was subject to the requirement that the number

of tapes to be made not exceed the number of drives available.

Current trends are aimed at using improved technology to attack a

number of problems. Some of these are timelines of processing, volume

of data and output processing on demand. To speed up availability of

telemetry data it is understood that the Station Data Acquisition and

Control (STADAC) system is transferring some processing activity, such

as the production of digital tapes, from the computer to the data ac-

quisition sites. Moving in the direction of near real-time processing

is dictated not only by a desire to get data to experimenters in a more

timely manner but also because some spacecraft, such as the recently

launched Atmospheric Explorer series, require rapid response to ensure

4



PHASE ACTIVITIES INCLUDED

1. Raw Data Processing a) Reverse playback data

b) Perform convolutional decoding

c) Check frame and subcommutator

synchronization

d) Flag errors (and perform cor-

rections where possible)

e) Make checks on spacecraft house-

keeping, time, etc., and flag errors

f) Determine format changes

2. Initial Refinement a) GMT time determination

b) Time smoothing

3. Correlation and Editing a) Attitude and orbital correlation

b) Edit processing

4. Archival Storage a) Transfer of data between appropri-
ate media

b) Create directories indicating
location level, and media of data

5. Decommutation and Output a) Decommute experimental data
Processing

b) Append orbital and attitude data

c) Provide format changes

d) Format output

e) Prepare hard copy notification
and/or documentation.

Table 1 - Processing Functions, Summarized

5



the well being of the experiments, as well as the spacecraft.

Another trend apprears to be rather than each experiment being

unique to an individual or location, a number of people in diverse lo-

cations will be interested in the data from a single experiment. In

addition not all will be interested in all of the data and output process-

ing on demand is one approach to such requirements. Increased storage

capacity is needed to be able to handle and store the increased volume

of data which longer spacecraft lifetimes and increased numbers of

sensors imply.

Phases 1 and 2 are often combined but for the purpose of this dis-

cussion we have indicated a separation as shown because the kind of

processing requirements needed in phase 1 has recently been shown by

Broglio [8] to be easily fulfilled by a specialized processor designed

to perform such pre-processing tasks. The calculations in the second

phase as listed in Table 1 seems to be computationally more burdensome

than the activities indicated by Broglio. However, if these activities

can be added to the tasks of such a specialized processor, there appears

no reason why this should not be done.

The next activity (3) is described as varying from one spacecraft

to the next, and it is identified as an individual task for that reason.

The assumption is made that the correlation tables for orbit and/or

attitude data are generally not merged with the experimental data for

which position is to be supplied. The archival storage function of

TELOPS [6, 7] is essential to that system and marks what seems to be a

significant departure in the processing of space data. It is to the use

6



of archival storage and output processing that this report speaks.

Decommutation has, as indicated earlier, generally been done once as

scheduled. Demand processing, particularly where the number of users

of the data is not vanishingly small, implies that requests for decom-

mutation may not arrive fortuitously, causing additional processing

burden due to repeating demand output.

While we assume that an economical input processor: (1) places

data in a uniform form regarding the position of the least significant

bit, (2) orders data chronologically, and (3) aligns data (word, half

word, byte or bit) boundary as may be required by successive processors.

Intermediate processing will be done by conventional systems and

the question may then be asked: "Are there any reasonably general models

which will be useful in the archive and/or output phases of processing?"

2.2 Data Structures and Arrays

The physical nature of storage media has always placed constraints

on the way we treat logical-to-physical mappings in the storage of data

and on the way in which we perceive the organization of the data in the

beginning.

The one dimensional nature of tapes has strong implication as to

the kinds of data which may be efficiently mapped to that medium.

Items having a strong sequentiality are most easily related in logical-

to-physical mappings for tapes. Situations where there is a hierarchy

in the structure can be mapped to tapes but with little liklihood of

either easy expansion of the data base or efficient random retrieval of

7



information.

At the same time, the low storage cost per bit has made tape at-

tractive as a storage medium for large data bases. Tape has served as

a reasonably good compromise for the storage of data such as that of

interest to GSFC because the low storage cost per bit and the

high volume of data are compatible; and since the number of transmitters

operating in parallel is reasonably small, the data flow is primarily

sequential in nature rather than parallel. The multiplicity in trans-

mitters may be handled by an n-fold parallelism of the discussion to

follow or by considering the net result to be a single source operating

at an increase bandwidth.

Accordingly we consider the spacecraft to station contact to be a

cast in the format of a single serial transmission directly correlated

with time. Successive station contacts may be brought to universal

time and ordered chronologically.

This for the moment neglects the case where the spacecraft may be

fading out of contact with one station while coming into contact with

another and duplicated at both stations. Problems which may exist with

playback and real-time data reception for related reasons are also ex-

cluded.

The tacit assumption is made that the use of disk or traditional

rotational memories has been somewhat more limited in the use because of

the data volume and storage costs except for cases where the volume is

kept manageable by limiting the period of retention. Quick look analysis

or selected positions of the orbit would be examples.

8



As the archival storage devices discussed in references [6, 7] become

available, the intent to have data stored on-line infers that different

accessing characteristics will play a role in system efficiency. The

net effect of rotational or bulk memories which behave more like disks

than tape is to come closer to approximating a memory which has random

access.

Of course main storage has linear addressing but the constant time

to access the next, arbitrarily chosen, memory cell leads us to con-

ceptional organizations of the data which are other than linear. For

example, several indirections in addressing directory search or chaining

through a tree structure are relatively small compared to tape or disk

access times.

2.3 An Array Model

Consider a frame of DATA which, for the nonce, is idealized in the

following way: A frame is P bits long and there are N experiments each

of which require M bits of data to encode that sensor's output. Clearly

P - - M x N, where we use the notation L + R to denote that L" is

equivalent to "R.

If we were to consider the data not as a vector of bits but as a

matrix, then FRAME - (N,M)pDATASTREAM and for IetN

FRAME[I;1] - the Ith sensor value (M bits). By the same token,

FRAME[;K] may be considered to be the Kth bit of all experiments. It

is not clear why we would be interested in such a construct particularly

since the bits will be in different computer words in main store and

therefore will be extremely costly to extract. If conditions are such

9



that M, the number of bits is, say 8 so that each sensor is a byte and

if a computer word is 4 bytes then the natural arrangement of data is:

FRAME4 ((N + 4), 4 x N)pDATASTREAM. Now if K is of the form

K - BYTEBOUNDARY x 18 (in index Origin 0), FRAME4[J ; K] denotes the

Ith experiment if J + LI + 4 and BYTEBOUNDARY + 8 x 411 (also in

Origin 0). Where K gives the indices of the bits within the word. Here

the matrix model has conceptual value in describing packed data when the

packing aligns the data in a fashion which is related to the addressing

structure of the host computer.

Returning to the first approach, suppose we have T frames and data

then PACKET + (T, N, M)pDATASTREAM is a three-dimensional array where

PACKET[I ; ;] is the Ith frame and PACKET[;J;1 is the Jth experiment

over all T frames. If there are S sources, then we may assume without

loss of generality that the frames are interleaved such that

STATIONCONTACT - (T, S, N, M)pDATASTREAM is a conceptual model for

addressing somewhat orthogonal but related quantities.

STATIONCONTACT[I ; ; ;1 is the collection of all Ith frames from

all sources.

STATIONCONTACT[; J ; ;] is the collection of all frames from the

Jth source, and

STATIONCONTACT[; ; K ;] is the Kth experiment in all frames from

all sources. In this last case we have made the (generally unfounded)

assumptions that each transmitter on board the spacecraft provides data

from the same number of experiments on each frame and further that the

Kth experiment from source A is related to ihat from source B.

10



Still the conceptual appeal of the array, even with the present

restrictions, lead us to inquire whether there are: (a) other descriptive

uses to which the homogeneous parallelepiped array may be applied,

(b) mappings which take us from the multi-dimensioned array to the

linear mappings which are natural to main store, and (c) adjustments

which allow us to deal with the restrictions in applying arrays to the

problem at hand.

We offer a brief look at the problem of commutation relative to

the first issue above and we defer the other two to later sections of

this report.

2.3.1 Commutation

Suppose that we assume that each data value fits into a computer

word so that the three dimensional array previously encountered may be

thought of as a matrix with the first coordinate direction denoting the

frame number and the second providing the experiment index. Thus suppose

that DATA[;K] is actually a commutation of S experiments. For a scalar,

K, DATAE;K] is the vector representing the commutated data; and if we

are interested in the Jth slot on the commutator then we want the values

given by the selection expression (J = SlipDATAE;K])/DATA[;K] where of

course we require JEiS. Now if we want to use the indexing of an array

as our model we need to achieve the form DATA[VECTOR ; K].

Since the compression above selects the Jth element in the sequence

and then values S apart in the vector DATAE;K] we expect VECTOR to have

the form START + SPACING x ISIZE in Origin 0, and this is an arithmetic

progression. Thus, VECTOR + + J + S x ISIZE where

11



SIZE + (J < SIpDATAE;K])+ L(pDATA[;K])-S. The expression for SIZE

simplifies if we have enough frames (pDATA[;Kl) such that the commutator

size S divides evenly the number of frames so that 0 + + SlpDATA[;K]

then SIZE - - (pDATA[;K]) + S.

The indexing expression DATA[J + S x i(pDATA[;K])+S ; K] selects

the commutated values.

As an aside we should note that if we seek rigor we sould formally

establish that the forms

U/V + U/V[tpV]

+ + V[U/ipV]

- VEA + B x IC]

are equivalent for proper choices of A, B, C relative to U and V.

Examples of formal proofs in APL can be found in [10]. The first equiva-

lence is trival in that the vector generated by its own size. The second

transformation follows from Lemma L6.2 of Abrams [10] (p. 42). The

final form follows from the fact that U has ones evenly spaced because

SI N - - NpiS. Such a spacing of ones implies indices having an arithme-

tic progression.

Next, unless the host computer has some unusual addressing capa-

bilities, the vector index expression of the form D[J + S x 1(pD) - S]

is not a good model. We delay in providing an alternate formulation to

point out that commutation may be expressed as indexing an array with

a suitably chosen arithmetic progression vector.

12



2.3.2 Supercommutation

Supercommutation takes place when more that one slot on a com-

mutator ring is used to capture the data for a single experiment, thus

allowing the sampling rate to be higher. These positions in the ring are

denoted by the vector LIST where LIST eIS and the positions of the slots

are in sequence such that I J implies LIST[I] LIST [J]. Then the

supercommutation may be expressed by

DATA[,(S x i(pDATA[;K]) S)o.+LIST;K]

In general, LIST will itself be an arithmetic progression as this

will provide an even spacing around the ring. In such a case the expression

for the first coordinate index is of the form (still in Origin 0):

,(Sx i(pDATA[;K]) S)o. + A + B x IC with A, B, C being positive

integers which will give the arithmetic progression in LIST. The net

effect of such an expression can be obtained by two nested loops such

as:

INDEX - 10
I 0

OUT: J A
IN: INDEX - INDEX, I + J

+ IN IF (A+BxC) > J+J+B
*OUT IF (pDATA[;K]) >II+S

If LIST has only one element in it then C + + 1 and 11 is zero in

Origin 0 comsequently the test at 1+ IN fails and falls through every

time. The effect is only one loop starting at A and moving forward in

increments of S. This then reduces to the earlier discussion on commutation.

13



2.3.3 Subcommutation

Subcommutation is a commutation within a commutation. To fit this

to the model we need to study (H = QItP)/VEC[A + B x IC] where the ex-

pression involving H, Q and P denote the subcommutation. By previous

arguments this can be considered as (VEC[A+BxiC]) [T+UxtV]. Now by

Lemma Ll of Abrams [10] (p. 43), this is VEC[(A+BxiC)[TxUxV]]. The

question of (A+BxIC[T+UxiV] - ? - K+LxiM for the choices

M V

L + -- B x U

K A + B x T

is answered in the affirmative. Thus, we conclude that subcommutation

fits the same model.

Reducing both of these cases to vector indexing implies that the

model chosen also handles, by composition of mappings on the indices,

a subcommutation of a supercommutation of the data. A direct calculation

of the final index set is less than straight forward because of the

nested loops which derives from the outer product used to represent the

supercommutation. The indexed array model may still be viewed another

way and that is if DATA[;K] for scalar K gives a single experiment and

supercommutation then becomes DATA[;SLOTS] with the vector SLOTS being

suitably chose to represent the encoding used. A reshape allows sub-

commutation indexing, giving the form ((M,N)pDATA[;SLOTS])[A+BxtC;K].

This foregoing convinces us that the array model is viable in the

case of uniform data.

14



2.4 Multi-Linear Files

In the above we have been considering the array, a parallelepiped

arrangement of data, as a suitable vehicle for conceptualizing space-

craft data. It appears that considering a data base to have a number of

orthogonal indices, where in any particular coordinate direction there

is the concept of a successor and predecessor of a data value, is a

useful approach. The structures of hierarchies, trees, linked lists and

so forth are replaced by the regularized structure of the multi-di-

mentional array. The concept of the multi-linear files is being studied

by G. E. Hoernes at this loaction and his work will be published else-

where. While Mr. Hoernes is concerned with problems of searching along

arbitrary directions and of defining bounded sub arrays of the original,

or host, array, his early work indicates that the conceptualization which

we have advocated here for spacecraft data is useful in relation to

other data bases.

The multi-linear data base is primarily one of stored information

from which data is retrieved for use in calculations elsewhere as opposed

to data which is accessed calculated and updated, although such an approach

is also possible. The data base grows in one of the coordinate directions

only and that direction is usually strongly correlated with time. The

other dimensions are generally fixed in number and the size of each

does not change exceptL, rarely over the history of the data base.

It is beyond the scope of this work to cover more than a few aspects

of how Multi-Linear Files may relate to data base organization. Search-

ing the values within some subarray to find the indices which correspond

15



to these values meeting prespecified criteria in what amounts to an

associated research is interesting but does not relate directly to the

problem at hand.

Data arrays which have holes or sparse volumes also do not apply

because the model postulated earlier is reasonably dense. Techniques

for handling duplicate values are more relevant and we shall allude to

this problem is a subsequent section.

Finally, there are a number of logical to physical mappings which

can be applied to multi-linear files. We now turn our attention to

techniques of such mappings for the array indexed model introduced in

this section.

3.0 STORAGE MAPPING FUNCTIONS

To make the array model useful we need to study the way in which an

element of the array is mapped onto physical storage. In the following

discussion we assume that all available storage is addressible and some

unit of storage, such as a word, is obtained on an access. This means

that the data has an address space in the range 12*M. This implies a

virtual storage or at least a storage management system which performs

roll-in/roll-out on segments of data which are large enough to make the

overhead of the software system acceptable. The second requirement for

such a storage manager is that the statistics of use are such that most

of the time we will remain within the segment rolled into main storage

so that excessive thrashing does not occur. To begin with we review array

storage and indexing in APL and then examine other storage strategies

useful for the problem at hand.

16



3.1 Arrays and Indexing in APL

Arrays in APL are: rectangular, in the sense that coordinate

directions are orthogonal, dense, in the sense that space is allocated

for a value at every index and either the entire array has values or it

is empty (having a dimension such that 0 - - x/pARRAY), homogeneous,

in that the packing of items in the array and the space reserved for

each is uniform. The last property is strongly one of implementation

convenience and not a requirement of the language.

Since each array is dynamically alterable in terms of its size as

well as the values that it holds, this structure information must be

retained together with the array's values. Each array is stored in

lexiographic or ravel order (row major order for matrices). Thus arrays

generally appear in storage as:

HEADER,(ppARRAY), (pARRAY),,ARRAY

HEADER contains packed information such as back pointers to the

symbol table, information as to type and whether the array is currently

unused and hence garbage, and a length count of the entire array. The

value of ppARRAY is included to give the size of pARRAY. The values

contained in ,ARRAY may be different than the storage requirements of

HEADER and/or ppARRAY and pARRAY and so the packed structure is of

record type however, the HEADER is of fixed size and the rest of the

structure information is calculated from the rank of the array.

To address the value of ARRAY[I ; J ; K] (for scalar I ; J ; K) let

us consider that 30 20 10 + pARRAY. We then note that there are

I -1 planes before the one of concern (in Origin 1), I - 1 rows and K

17



elements including the addressee. Each plane has 10 x 20 + 200

elements in it, and each row has 20 elements in it. Thus,

ADDRESS +/200 20 1 x (I - 1),(J - 1),K is the value needed for

(,ARRAY)[ADDRESS]. This may be put in a more uniform form by rewriting

this as ADDRESS - 1 + +/W x (I,J,K) - 1 where W is 200 20 1. Noting

that subtracting by one changes indices to Origin 0 and adding one

returns to Origin 1, we may rewrite the expression as:

ADDRESS - IORG ++/W x (I,J,K) - IORG where IORG denotes the index

origin.

Finally noting that the calculation of W is precisely the weighting

vector used in calculating the base value in the mixed radix system

(pARRAY), we may note that the translation of the array index to an

index of the ravel of the array is

(,ARRAY)[IORG + (pARRAY) ± INDEX - IORG]

INDEX 11, 12,... IK

with the Ii denoting the scalar index values of each of the K coordinates.

This is just a polynomial evaluating the indices in a mixed radix

number system.

The problem of efficient indexing in APL has addressed by Hassitt

and Lyon [11], and before we review their results it is pertinent to

note why the structure of APL provides a problem of efficiency. In

general, array A, of rank K (i.e. ppA - - K), is indexed by an index

list with the K index expressions being separated by K - 1 semi-colons.

Let [ denote SEPARATOR(O). The K semi-colons denote SEPARATOR(I) and

] denotes SEPARATOR(K+1) then for KEippA(ORIGIN 0),the expression

18



between SEPARATOR(K) and SEPARATOR(K + 1) may be:

a) Missing - In which case take the expression to be

E - -- i(pA)[K + IORG]

b) Some APL expression E the values of which are in the domain of

that subscript 1 - + A/,EEi(pA)[K + IORG].

Noting that the shape of resulting array is the catenation of the

shape of the K expressions and the rank of the result is the sum of

the ranks of the K expressions, suppose Ek, the expression between the

and K + 1 separator, is of rank:

0 - This dimension's index tends to reduce the rank of the result
and the effect of this dimension is constant over the rest of
the array and it may be calculated once and removed from the
remaining calculations

1 - This subscript neither decreases nor increases the rank of the
result. The special cases of an arithmetic progression (AP)
vector here or missing expression (equivalent to an AP vector)
are worth noting because only 3 parameters are needed: START,
STEP size and LENGTH; otherwise we step through the values.

>1 - This subscript tends to increase the rank of the result and
usually the fact that the ravel of the values form an AP
vector either does not hold or such information is lost by
the time evaluation is carried out.

As shown above the evaluation of an array, A, subscripted in each

of the K dimensions with a scalar requires K + 1 multiplications in

the weighting process. If we let E. represent the index expression in
1

the ith coordinate and letting S denote a vector which relates to the

original array A in the following way:

pS + + K - ppA

S[I] +- p,E..
1

19



We have S[I] as a number of elements used in the ith index direction,

independent of the size and rank of the value of the ith subscript

expression. Then one would believe that x/S evaluations of a scalar

index are required implying (K - 1) x x/S multiplications. Using the

technique of Hassitt and Lyon [11] this may be reduced to at most +/S

multiplications, and we summarize their technique next.

3.2.1 Hassitt and Lyon's Approach to Indexing

Figures 1 through 4 give modifications to the results published

in [11]. This was done for two reasons:

(1) The routines in the reference cited worked with a character

string representation of the indexing operation and data structures of

that string (as would be done internal to APL); what we have done is to

write two new functions INDEX and A so the indexing process on array,

ARRAY could be modeled by ARRAY INDEX (E ) A (E1 ) A ... A (Ek) where

E. is the index expression, (variable, or constant) in the ith coordinate

position. This allows the execution to be traced. The functions

INDA and POP of [7] were modified to account for this change.

and (2)

Three errors were discovered in INDC as given in reference [11].

In line [23] the >0 should be replaced by 0 to account for the fact

that the functions run in 0 origin indexing and 0 is a valid subscript.

Secondly, in the text as published, the variable U is not initialized

in INDC[40] when using the call INDC 1. Thus,

INDC[40]ENDS: S 2561L[U4] should be corrected to read:

20



VINDEXE[ V VBIT[] V
V Z+A INDEX R;P;J;K;M;D V Z-BIT K

[1] +(lppA)/L01 [13 A GET BIT K OF S
[2] Z-A[R] [2] A NOTE TIHAT,0 ORIGIN IS USED
[3] 0 [3] Z-( ,(8p2)TS)[K]
[4] LO1:P-(ppA)-1 V
[5] J-1 VCFECK[] V
[6] B-R[0]+R V Z-C'HECK A
[7] K+R[O]+3 [1] +(v/0>,Z-A)/ERROR
[8] LOOP:M+K+R[K] [2] +(-v/Rs,A)/O
[9] D+K+M+R [3] ERROR:'INDEX ERROR'
[10] B+B,D [4]
[11] J-J+1 V
[12] -((J=P),(J>P))/L2,L3 VERRORIFE]V
[13] +LOOP,K+M+3 V A ERRORIF C
[14] L2:+LOOP,K+M [1] 0 IF-~v/,C
[15] L3:IB+(J+1)+B [2] A,' ERROR'
[16] L5:IB+IB,(+/IB)+(1++/IP)+B [3] +

[17] -(P-J J+1)/L5 V
[18] L4:INDA VIF[0]V
[19] INDB V Z-A IF B
[20] Z-EVAL [1] Z-B/A

V V
VA[O]V VIORG[I]V

V R+Z A Y;FY;FZ V Z+IORG
[1] FY-(ppY),(pY),v [1] Z+?1
[21 FZ(ppZ),(pZ),Z V
E3] R-(1+pFZ),FZ,(I+pFV),FY

A A[ ; ;2 3]
0 1 2 3 4 5 2 3
6 7 8 9 10 11 8 9

12 13 14 15 16 17 14 15
18 19 20 21 22 23 20 21

24 25 26 27 28 29 26 27
30 31 32 33 34 35 32 33
36 37 38 39 40 41 38 39
42 43 44 45 46 47 44 45

A INDEX ((10)A(0O)A(2 3))
2 3
8 9

14 15
20 21

A[0;2;1+2xt3]
13 15 17 26 27

32 33
A INDEX ((0)A(2)A(1+2xi3)) 38 39

13 15 17 44 45

Figure 1 Index and Ancillary Functions
21



INDC[40] ENDS: S 2561L[U-LL[114]. Finally, the values of COUNT,

STEP, and Z were not changed in executing INDC[40] through INDC[50].

Line [49] is in error and should be corrected from:

INDC[49] DOWN1: STEP - L[U + 2] - LEU + 51 to:

INDC[491 DOWN1: STEP L[U + 2] + STEP + 1

In the repeated use of A, a block (2+(ppE.i)+x/pE.),(ppE.i)(PEi),,E

is built up for each index expression E.. Thus, A acts as a semicolon

in writing the expression and the parentheses are required by APL's

order of evaluation. Missing subscripts require an explicit (10)

to be inserted. This compound right argument is decoded and moved to

INDA (modified) via POP (also modified).

In INDA a vector L is constructed (in effect) by the catenation

of a number of other vectors L - - C, BO, B1,..., BK, V, S, T.

Think of C, BO, Bl,..., BK to be the ravel of a matrix CB of

K + 2 rows and 6 columns; then (CB[O;] - - 8, (1 6 x K + 1), 3p0

and for 1 I and I ! K + 1, BI - - CB[I;] is of the form:

0,E., 0 0 0 0 if E. is scalar
1 1

1,E.[0], 0 0, (pE i ), -/E.[1 01 if E. is an APL vector
1 1 1 1

5 0 0 0, OS,1 if E. is missing
1

2 0 0 0, (pE.), OV if E. is a vector or array
1 1

The meaning of OS and OV will be noted in a moment.

CB[; 2 3] will be used to hold pA and the polynomial weights

repsectively. V contains, in sequence, the catenation of the ravels of

all blocks (index expressions) which are not scalar, AP vector, or

missing.

22



S is the shape of the result; T - - pS is the rank of the result.

In the case of a missing subscript, OS points to the location of L

(actually in the S portion) where that size will be found. This will

be filled in later when the missing subscript is converted to an AP

vector. When E. is a vector (not AP) or array, OV (i.e. CB[I;5] points

to the place in L (in the V portion) where the values from E. begin.
1

In INDC a number of intermediate calculations and optimizations

take place. In the following the calculitiois values are placed in L

but we will describe them in terms of CB.

First the shape of A and the weights are filled in, (remembering

that ppA - K + 1)

OB8[1+iK+1;2] - pA then the weights are derived:

COI[2+K;3] - 1

MORE: J K + 1

C([J;3] + x /CB[1+J;2 3]

- MORE IF 1 - J J-l

Calculations then proceed to: check if each subscript is in range,

multiply scalar values (CB[I;1] when CB[I;Oj = 0) by the weight

CBET;3] and add to CB[O;0] (the fixed part of the address). Missing

subscripts are then made to look like AP vectors. AP vectors are check-

ed for range and multiplied by the appropriate weight

CB[I;1 5] - CBEI;3] x CB[I;I 5]. Each of the appropriate values in

V is multiplied by its appropriate weight.

Finally adjacent AP vectors are examined to see if only a single

loop may be used rather than running counters for nested loops. This

23



gives optimization to indices of the form A[K; ; ;1.

Suppose the pA - + 300 100 20 and the expression in A3 ; ;],

then if we display L AS

CB

V

S

T

we have at the end of INDA

8 3 18 0 0 0 C

0 3 0 0 0 0 BO

5 0 0 0 24 1 - B1

5 0 0 0 25 1 + +B2

0 0 ++S

2 T

V does not appear since there are no indices which are not AP

vectors or which have general arrays. The 24 and 25 in C[2 3 ; 4]

point to the location of the two zeros in S.

After moving the dimensions and weights in, the structure would

look like:

8 3 18 0 0 0 +C

0 3 300 2000 0 0 + BO

5 0 100 20 24 1 + + B

5 0 20 1 25 1 B2

0 0 S

2 + *T

24



VINDA [0] V
V INDA;LL;ARANK;SRANK;BB;BS;BV;N

[13 LL -7+ARANK-SRANK-0
[2] JO
[3] LI:ARANK+ARANK+1
[4] (TO,T1,T2, 0 0 ,T5)[POP]
[5] T5:+T1
[6] T2:LL-LL+p,X
[7 ] TO,SRANK+SRANK+ppX
[8 T1 : SRANK*SRANK+1
[9] TO:LL-LL+6
[10] ( (ppA)>J+J+1)/L1
[11] L(LL+SRANK) p 0
[12] LEO 1 2]+8,ARANK,6xARANK
[13] L[-1+pL]-SRANK
[14] BB-6
[15] BV4L[2]+6
[16] BS(pL)+-1-SRANK
[17] J-0
[18] L4:+(TTO,TTI,TT2, 0 0 ,TT5)[POP]
[19] TT5:L[BB+i6]+ 5 0 0 0 ,BS,i
[20] L2:-L3,BS+BS+1
[21] TT2:'DOMAIN' ERRORIFv/,XxLX
[22] LEBV+iN+p,X]+,X
[23] L[BS+tppX]-pX
[24] BS+BS+ppX
[25] LEBB+t6]- 2 0 0 0 ,N,BV
[26] +L3,BV+BV+N
[27] TT1:L[BS]*pX
[28] -L2,L[BB+161I,X[0], O 0 ,(pX),X[1]-X[0]
[29] TTO:'DOMAIN' ERRORIF X*LX
[30] L[BB+16]-O,X, 0 0 0 0
[31] L3:BB+BB+6
[32] +((ppA)>J+J+1)/L4

V
VPOP[ ]V

V PP-POP;H;I;LI;RI
[1] *(JO)/L6
[2] I(IB[J])+B
[3] +L7,NB+IB[J]
[4] L6:I+NB+(NB+IB[J])+B
[5] NB+NB+IB[J]
[6] L7:-((I[1]=0),(I[1]=1),(I[1]22))/LL1,LL2,LL3
[7] LL1:X+2+I
[83 ] PP+0

[11] +O,PP+5

[12] LL4:X+3+I
[13] ((pX)<3)/LL5
[14 +(A/([/T)=T+(14X)- -1+X)/LL6
[15] LL5:-0,PP+2
[16] LL6:+O,PP-1
[171 LL3:RI+2+(2+I[1])+I
[181 LI+(2+I[1])+I
[ 19 XRIpLI
[20] -0,PP-2

V

Figure 2 INDA and POP

25



Next the blocks are processed checking for bounds; missing subscripts

are converted to AP vectors with the array sizes filled in. The scalar

value is multiplied by its weight and it is filled in. We have:

8 3 18 0 0 0 - C

16 3 300 2000 0 0 -- BO

21 0 100 20 100 20 + B1

21 0 20 1 20 1 -+ B2

100 20 S

2 - T

Next, the scalar values are found and moved out of the loop by adding

them together the scalar values are multiplied by the weights (i.e.,

+/x/CB[I;1 3] for I denoting rows which contain scalar values. Finally,

we discover adjacent AP vectors which are of the form:

CB[I-1;5]+ - x/CB[I;4 5]

This condition occurs in the rightmost two columns of B1 and B2

which are of the form:

. . . 100 20

S. . 20 1

This means that the least significant subscript moves in steps of 1 to

a count of 20 then that counter is reset while the next counter moves

in steps of 20 to a count of 100, and the B2 counter steps through 20

increments between each change of the B1 counter. Thus, a single

counter using steps of 1 up to 2000 can be substituted. After these

two steps are accomplished there will be some unused blocks (rows of

CB). Active blocks are moved to the head of the list.

26



VINDB[OJV
V INDB;D;W;S;K;F;Q

[1]3 NOTE THAT 0 ORIGIN IS USED
[2] 'RANK' ERRORIF L[loppA
[3] D+(pA)[Q-lI+ppA]
[4] S4-W1+F-0
[5] LEK]-L[K+L[2]]+16
[6] a START AT INNER BLOCK AND PROCESS
[7] A ONE BLOCK AT A TIME
[8] LOOP:L[K+ 2 3]+D,W
[9] +(TO,TI,T2, 0 0 ,T5)[81L[K]]
[10] TO:F+F+WxCHECK L[K+1]-IORG
[11] MOR:S*SxL[K+4]
[12] MOR2:-ENDLOOP IF L[K+K-6]>7
[13] W+WxD
[14] +LOOP,D+(pA)[Q+Q-1]
[15] T5:LI1,L[K+4]4-LL[K+4]]-D
[16] Tl:F+F+WxCHECK L[K+l]
[17] +(0OxCHECK L[K+1]+L[K+5]xL[K+4]-I)/Ll
[18] L1:L[K+51-WxL[K+5]
[19] -MOR IF(L[K]>16)Vl21L[K+61
[20] a SUCCESIVE AP VECTORS,REDUCE IF POSSIBLE

[21] -MOR IF L[K+5]cLrK+10]xL[K+11]
[22] L[K+6]-L[K+6]-41L[K+6]
[23] S+SxL[K+4]
[24] -MOR2,L[K+ 5 4]+L[K+11],L[K+4]xL[K+10]
[25] T2:L[Ph]WxCHECK LE[PL[K+5]+tL[K+4]]-IORG
[26] +MOR
[27] m NOW MOVE ACTIVE BLOCKS TO HEAD OF LIST
[28] ENDLOOP:P+6+K-0
[29] L4:-L2 IF 0=41IL[KK+6]
[30] +L3 IF K=P
[31] L[P+i6]+L[K+t6]
[32] L3:P-P+6
[33] L2:+L4 IF~L[K]>15
[34] L[6h]8+81LE6]
[35] L[P-6]+16+161L[P-6]
[36] L[0]-F

V

VEVAL [ V
V Z+EVAL;I;J;N;T

[1] a NOTE THAT 0 ORIGIN IS USED
[2] +NOTNULL IF OJ+x/N+-1+(-1+-1+L)+L
[3] Z+NpI+,A
[4] -0
[5] ATHIS SETS I=ZERO OR BLANK
[6] NOTNULL:I+1+( T+0)pA
[7] SO NOW WE CAN INITIALIZE Z
[8] Z-JpI
[9] LOOP:-SKIP IF O>I+INDC T>O
[10] ZE[T](,A)[I]
[11] SKIP:-LOOP IF J>T+T+1
[12] Z+NpZ

V

Figure 3 INDB and EVAL

27



VINDC[O] V
V Z+INDC T;U;S;COUNT;STEP;W

El] a NOTE THAT 0 ORIGIN IS USED
[2] +FETCH IF T
[3] pINITIALIZE LOOPS AND GET FIRST VALUE
[4] Z+L[0]
[5] LE[]+-U+0
[6] LOOP:S+2561L[U+U+6]
[7] LOOP1:STEP+L[U+5]
[8] COUNT+L[U+4]-1
[9] -(DOWN0,DOWN01,DOWNIO)[2iBIT 6 7]
[10] a CAN ONLY OCCUR IF O=ppA
[111 DOWNOO:0
[12] AP CASE
[13] DOWN01:-( 0-L[U+31]Z)/POS
[14] STEP-0
[15] POS:-(BIT 3)/INNER
[16] NOTIN:+LOOP,L[U+ 1 2]+COUNT,STEP
[17] INNER:U+1+4xU
[181 L[4]+Z
[19] INNER1:+0O,L[1 2 31]U,COUNT,STEP
[20] A GENERAL VECTOR OR ARRAY
[21] A 'STEP' ACTUALLY CONTAINS OFFSET
[22] DOWN10:W+Z
[23] Z+(-1,Z+L[STEP])[L[STEP]>0]
[24] .INNER2 IF BIT 3
[25] NOTIN,L[U+3]+W
[26] INNER2:U+3+4xU
[27] -INNER1,L[4]+W
[28] A
[29] A GET NEXT VALUE,L[1 2 3] CONTAINS
[30] A COUNT, STEP OR OFFSET,OLD VALUE
[31] FETCH:-NONSC IF 21S+2561L[l]
[32] FINAL:'NO MORE ELEMENTS IN LIST'
[33] -Z+O
[34] NONSC:-ENDS IF O>L[2-L[2]-1
[35] +VEC IF BIT 6
[36] -O,Z+L[l14]L[3]+L[4]
[37] VEC:+O IF O>Z+L[3]
[38] +O,Z+L[4]+L[L[3]+L[3]+1]
[39] A INNER LOOP IS FINISHED,TRY NEXT OUTER
[40] ENDS:S+2561LE[ULL[1'4]
[41] UP:-FINAL IF BIT 4
[42] S+L[U+U-6]
[43] Z+L[U+3]
[44] STEP+L[U+2]
[45] -UP IF O>L[U+I]+COUNT*L[U+1I-1
[46] a OUTER IS OK,SO RE- CYCLE INNER
[47] +DOWNI IF BIT 6
[48] -LOOP,L[U+3]+Z+Z+STEP
[49] DOWN1:STEP+L[U+21]STEP+1
[50] LOOP,Z( -I,Z+L[STEP])[L[STEP]>O]

Figure 4 INDC

28



When we finish we have L of the form:

6000 g g g g g

29 g g g 2000 g

g g g g g g

g g g g g g

100 20

2

The g's denote garbage or unused entries. At the end of the optimi-

zation L has the form C, BO, B1, ... , BK, V, S, T where

C F g g g g g

BI X g g g N S

V (old values - IORG) x weight factor

S + shape of result

T + rank of result

and g still denotes garbage entries.

If 41X + - 0 then block no longer used

1 then block generates S x IN (i.e., AP or missing subscript)

2 then block generates L[S + IN]

F is the fixed part of the addressing from scalars or the offset START

in START + STEP x INUMBER

The routines EVAL and INDC are used to pick up the values. The

structure I containing the active BI uses, BIE1] as a counter to

step through IN;BIE2] is used as an offset or step; and BIE3] holds

the currect value.

29



3.2.2 Discussion

Several comments about Hassitt and Lyon's indexing technique [11]

which we have sketched above are appropriate at this point.

First, the number of multiplications encountered in the translations

of the index by the polynomial is greatly reduced. In A[S1;S2;S3] we

expect (-i + ppA) x (p,S1) x (p,S2) x (p,S3) multiplication for example

for pA - - 300 100 20 and A[3 ; ;] this would be 2 x 1 x 100 x 20 or

4000. The method described above turns out to use two for each AP

vector and one for each scalar and so for the example given there are

5 multiplication. In general at most only (p,S1) + (p,S2) + (p,S3)

multiply operations are needed. AP vectors (and therefore missing sub-

scripts) are effort saving in terms of multiply operations.

Next, the routines are straightforward and may be written using

mostly LOAD, STORE, and BRANCH operations. Even with complex functions

such as RESIDUE the routines were designed so that in AIX,A is a power

of two. The function can be implemented by MASKING to pick up the2®A

low order bits of X. Thus, the routines are extremely amenable to be

implemented in a microprogram form.

Finally, the block L describing the indexing is separated from the

values and since the calculation take place in L only enough additional

space to store the local variables of the routines will be required to

make re-entrant coding of this approach directly available. In terms

of storage for the indexing function if all index expressions are

scalar, or AP vectors (which include missing subscripts), then

(6x(1xppARRAY)) + i+ppRESULT or less than 7x1+ppARRAY cells are required,

30



and in general the space for V must be added. In arrays of large rank

there may well be adjacent subscripts in which there are missing ex-

pressions. These may be squeezed together to reduce the number of

loops and hence the overhead oftloop initialization, incrementation

and testing for the end condition

3.3 Other Storage Mappings

In the preceding section polynomial indexing was used to map and

n-dimensional rectangular array onto linear storage addresses. Some

time ago (1962), S. A. Hoffman [12] discussed ways of defining, al-

locating, and referencing data structures which generalize rectangular

arrays. Subsequent to Hoffmans work, P. Deuel [13] published a more

efficient algorithm for the storage mapping function of Hoffman.

Before examining an APL version of Deuel's algorithm, we exhibit

an example of a structure to which such a mapping function may be applied.

Suppose we have a personnel file having three levels. The number in

parentheses denote the number of instances of that item. In brackets

we give the name of the item.

Personal Record (40) [P]

Name (20) [U]

Salary History (10) [S]

Date (6) [D]

New Salary (5) [T]

Evaluation List (10) [E]

Date (6) [D]

Rating (2) [R]

31



Every structure is either an array of (unstructured) particles or

a (sub)structure of identical instances. It is assumed that all

particles are alloted che same number of storage units whether the units

be bits, bytes, half words, words, or some larger unit of storage.

In this example there are 40 instances of Personel Record; each

instance is a sequence of structures:

< Name, Salary History, Evaluation List >. Name consists of 20 particles

and the structure Salary History has 10 instances each instance consists

of the Data (which has 6 particles) and the New Salary (having 5 particles).

Table 2 gives a tabular formulation of the same structure.

Name N P U S D T E D R

Level L 1 2 2 3 3 2 3 3

Court C 40 20 10 6 5 10 6 2

Table 2. A Tabular description of a structure

A reference expression is a sequence of a subscripted names in

the form of either

Al(X1)A2(x2) ... Ak(xk)

or

A1 (X1)A2 (x2) ...

with level(A) ) < level(Ai+1) and with level(Al) = 1 and with each

0 < x.i and x. 
< count (Ai). The first form designates a specific instance

or particle and the second references a specific (sub)structure. Thus,

P(5) denotes the 5th instance of P and P(5)U denotes the name of P(5).

32



P(5)S(2)D(3) gives the 3rd instance of S within the 5th instance of P.

Note that there is no confusion as to which D is referenced because

the sequence of names is unique.

Deuel's algorithm is given in Figure 5 as an APL function. The

input is a matrix of two rows and as many columns as there are columns

in the tabular form of the structure. In fact the input is the tabular

structure excluding the name row. Table 3 shows the output from the

Storage Mapping Function, SMF, rejoined with the names. Table 3 is

thus Table 2 with rows Q and M appended.

NAME P U S D T E D R

LEVEL 1 2 2 3 3 2 3 3

COUNT 40 20 10 6 5 10 6 2

Q 0 0 20 0 6 130 0 6

M 210 1 11 1 1 8 1 1

Table 3. Q and M appended to the tabular form of a structure.

The values for Q and M may be used to calculate the storage location

is A1 (X1)A2 (x2) ... Ak(xk) relative to the base address for Al by

k
Z [Q(A i ) + M(A i )(x. - 1)]

i=l

Relative to the example structure introduced above the particle

P(5)S(2)D(3) address, in terms of an offset from the start of storage,

is calculated as:

33



VSMF[O]V
V Z-SMF LC;Q;M;W;I;LIMIT;N;J;T

[1] N-l +pLC
[2 Q +Np0
[33 M4Np1
[4] +-NOAEND IF NA1
[5] +EXIT AFTER ME13-1
[6] NOAEND:W-0
[7] 1+1
[8] SCAN:I+I+1
19 +BRANCH IF I<N
[10] +FIRSTM AFTER LIMIT-LC[1;1]
[11] BRANCH:+(LINK,DEFINE,UNLINK)[2+x-/LC[1;I- 1 0]]
[12] LINK:M[I-13-W
[13] W+I-1
[14] +SCAN AFTER QFI]0
[15] DEFINE:M[I-1]-1
[16] +SCAN AFTER Q[I]-Q[I-1]+LC[2;I-13
[171 UNLINK:LIMIT-LC[1;I]
[18] FIRSTM:M[I-1]-1
[19] JtI-1
[20] MORE:T+M[W]
[21] M[W]-Q[J]+LC[2;J]xM[J]
[22] J-W
[23] W+T
[24] -+MORE IF LC[1;J]>LIMIT
[25] +EXIT IF I>N
[26] -SCAN AFTER Q[I]+Q[J]+LC[2;J]xM[J]
[27] EXIT:Z LC,[1] Q,[0.51 M

V

VIF[O]V
V Z-L IF R

[1] Z+R/L
V

VAFTERO] V
V Z4L AFTER P

[13 Z-L
V

Figure 5 The Structure Mapping Function, SMF

34



[0 + 210.4] + [20 + 11 - 1] + [0 + 1 * 2]

= 840 + 31 + 2 = 873

the case of

Al(x)A 2(x2 ) ... A k implies the sequence of A 1 (x1 )A2 (x2 ) ... Ak(xk )

for all Xk. ranging in sequence from 1 to count(Ak). Thus

A 1 (X1 )A2 (x2 ) ... Ak and A1 (X1 )A2 (x2 ) ... Ak(1) point to the same

element and since particles in a substructure are stored in consecutive

elements, we may address the first element and then pick up the correct

number of elements and that number is given by M(Ak) C(Ak).

An examination of the access function parameters produced by SMF

indicates that the structure is traversed left to right listing each of

the particles in lexigraphic order of counting in the names.

While the above looks something like an indexing operation in

Origin 1 for arrays considered earlier, it is perhaps not entirely clear

how SMF will deal with an array having the regularity found earlier.

3.4 Arrays of Structures

If we consider a three dimensional array, A, of say 5 by 4 by 3,

then we may take the array to be a structure which consists of 5 planes

each of which has 4 rows, each of which has 3 elements. In tabular form

this gives:

NAME Planes Rows Columns

Level +-+ 1 2 3

Count +--+ 5 4 3

35



If we use this as data for SMF we obtain:

Q+-* 0 0 0

M +-+ 12 3 1

Clearly since every name must be present if we index in all coordinate

positions (with scalars in an APL sense), the form

k
I [Q(A.) + M(Ai)(x. - 1)]

i=l

reduces to +/Q+MxX-IORG and since Q - + 3p0 and M is identical to the

W encountered previously, the polynomial indexing of regular arrays is

a special case of the structures mapped by SMF as shown in Figure 5.

The equivalence A[I;J;K] + - Planes(I)Rows(J)Columns(K) thus holds,

and further the equivalent descriptions given below also follow

A - - Planes

A[I;;] + + Planes(I)Rows

A[I;J;] + + Planes(I)Rows(J)Columns

However, there are no equivalents to the forms: A[;I;], A[;;I], A[I;;J]

or A[;I;J].

Of course we can always simulate these missing forms by scalar

indexing, stepping through the appropriate set of subscripts in the spirit

of the previous section, and reshaping the result. It should be noted

that the last dimension of the array occurs as a particle array whereas

the other dimensions of the array refer to structures. If we use the

tabular form,

L 1 2 3 3 3

C 5 4 1 1 1

36



we see that the last dimension is now described as a structure, each

having a single particle. The names and the result of SMF are

NAMES Planes Rows Coll Co12 Co13

Level - - 1 2 3 3 3

Count -- 5 4 1 1 1

Q - 0 0 0 1 2

M *- 12 3 1 1 1

Two things are to be noted: (1) The weights in M in the first two

coordinates positions are not disturbed; and (2) To index in the third

dimension requires the selection of the proper name in the third level

of the structure. Thus, A[3;2;2] is equivalent to Planes(3)Rows(2)Column2.

If we consider using this same artifice on the second dimension, we

get a structure which looks like:

L*-+ 1 2 3 2 3 2 3 2 3

C - 5 1 3 1 3 1 3 1 3

Q*- 0 0 0 3 0 6 0 9 0

M 12 3 1 3 1 3 1 3 1

The cost, in terms of the size of the descriptors Q and M, has increased,

and in the above we see that the last dimension is still encoded as a

particle array in the structure. To alleviate this, as in the immediately

preceding, would require an additional 8 - - (3 x 4) - 4 elements in

Q and M. As other than the last dimension is altered in the fashion

suggested above, the size of the descriptor matrix, QM, grows prohibitively

large. If we alter the structure in the last dimension only, then the

QM descriptor of the structure for A is 2 by

37



(pA)[(ppA+IORG-11 + -1+ppA matrix.

Actually since the first -+ppA elements of Q are O's and the last

(pA)[(ppA)+IORG-1] elements of M are l's, the space requirements may be

cut in half if we know the rank of A. Thus Q and M can be a vector,

VQM, with VQM given by: VQM - ((-1 + ppA) + M),(-1+ppA)+Q and for the

example shown on the top of page 37 we have VQM + + 12 3 0 1 2.

It is straightforward to return to array indexing when we consider the

structure formulation. Consider, AR, indexed by a scalar in each co-

ordinate position, is the meta-notation of Abrams [10].

AR[;/INDEX] where INDEX is the catenation of the ppAR scalar values.

Then if we construct L and C for SMF as

L - (_-1 + ppAR), (pAR)[ppAR]pppAR

C - ( 1 + pAR), (pAR) [ppAR]pl

in Origin 1 (since that is required in the next step, where SMF is

called).

Next construct VQM from Q and M, the output of SMF. The index is

then given by

(,AR)[IORG+((-I+ppAR)+VQME-1+INDEX]+(-I+ppAR)+VQN)+.x(-I+INDEX)-IORG]

3.5 Application of Structure Mappings to the Array Model

Up to this point our examination of structures as an alternate

mapping scheme has not seemed to be directly applicable. However if we

return to the 5 by 4 by 3 array introduced earlier, and consider the

case where in the third dimension the elements do not take up the same

amount of space, but rather let count at the lowest level denote the

38



amount of space required by each particle. Suppose the space required

for the three elements is 2, 1, and 2 units respectively. The structure

becomes:

L - 1 2 3 3 3

C - 5 4 2 1 2

Q 0 0 0 2 3

M + 20 5 1 1 1

and

VQM + - 20 5 0 2 3.

This will allow us to calculate the starting point in the raveled

array of any item. A little thought will show that the lengths (ip

addressing units) are also needed and this can either mean that the

information in Count is retained or an additional element can be appended

to VQM so that the length (in addressing units) can be obtained by the

difference of two adjacent elements of VQM. (After we have dropped

the first 1+pp4 elements.)

Thus, the structure model provides a means of handling the varying

lengths of data encoded in a frame of telemetry data. The non uniformity

of data is solved providing: (1) the addressing units are small enough

to prevent excessive wastage; (2) the experimental data is unpacked

to the extent that it is on addressing boundaries; and (3) the data

layout is such that we may place these varying lengths in the last di-

mension. The validity of the first assumption depends on

(1) The addressing structure of the computer. If the computer

can address to the bit, little overhead in space will be

39



encountered. If only full words can be addressed, then a

great amount of waste can occur. Assume that the word length

is 32 bits with byte (8 bit) and half-word addressing available.

(2) The statistical distribution of the lengths, in bits, of the

experiments on board a particular spacecraft. Assume that the

range is from 6 to 32 bits. (Reference [9] p. 5). We take

the frame size to be in the order of 1200 bits [6,7] and that

on the average a data point is 10 bits [6]. This amounts to

approximately 120 experiments, each of which requires 2 bytes

when aligned on byte boundaries: 2 -+ [10 8. Thus a frame

takes up 240 bytes rather than 150, for a 60% increase.

This neglects an intermediate approach of arranging only part

of the data on the boundary and doing so with experiments which

are judged as being more likely as receiving significant activity.

The remaining data is left packed, to be unpacked in demand.

Because of the number of bits usually used in A-to-D conversion,

we take the large bit lengths to be unlikely.

We also assume that positional and spacecraft attitude data requires

four parameters (including time) for each of the two calculations. Four

bytes for each parameter are assumed [6], for a total of 4 x 2 x 4 = 32

bytes. This data is generally stored separately and it appears by

examination that it is not unusual for such calculations to be made with

a frequency of approximately one per minute during the life of the

spacecraft. We assume that there are interpolations applied to the time

to obtain a corrected position from the spacecraft position data. To

40



add the data for a frame, assuming the bit lengths of the experiments are

sufficient to make the time, and hence the positional, corrections,

requires 32 bytes (13.3% of the frame) for the positional data.

At the same time perhaps only 1% or less of the data is expanded in

the sense of calculating the position and/or attitude data. On the one

hand having the positional data in line makes it possible to include its

retrieval in the same data movement as that required for the rest of the

data. The small amount of data using orbital or attitude data relative

to the total volume suggests that such an approach would not be taken.

One alternative would be to have several frames blocked together and

attach positional and orbital data to that ensemble in such a fashion

that interpolations can be made. A more usual approach would to provide

a link which will mark whether the orbital/attitude data has been computed

for those frames and if so, provide its location in the address space.

Thus, the array might be viewed as organizing the data in the

following way:

DATAESTATION;EVENTASOURCE;FRAMEANOS;FRAMEAEVENTS]

This places all of the data of a single frame in the last dimension

so that the encoding scheme just outlined can be applied. The next to

last coordinate is labeled FRAMEANOS, and we note that while each frame

has an index number denoting the sequence in which the data was generated,

the use of that number (or some sequence of them) is inconvenient to the

user. Data associated with a particular longitude and latitude or with

some orbital event such as the perigee is more likely to be the way in

which a user thinks of defining his data search. Values for such a

41



search are not directly associated with the frame numbers but rather

with data itself which is logically a part of the frame. The fact that

this data is actually stored elsewhere, such as in the orbital/attitude

data tables, is a system convenience for storage efficiency.

The array model need not be made to suffer however. The indices

can be arranged to suit the needs of the user community (with perhaps

a loss of retrieval efficiency) by making the index expressions function-

al so that they generate the indices indirectly.

The fact still remains that the way archival storage has been

handled in the past, and to a large extent continued in the modifications

suggested by this proposal, makes concessions to the data volume and not

to the direct needs of the users. Most of the actual use of the data

has been up to the individual experimenter.

4.0 THE USER-DATA BASE INTERFACE

The previous sections have examined the use of the array as a tool

to interface the scientific user to a large data base. The particular

APL-like flavor of the array need not be retained however.

The usual structure used to contain the data is often one in which

the needs of the end user are secondary to the requirements of collecting

and storing the information. Practice has been one of viewing the storage

as a repository of collected data rather than the user view of data

which is: "The information is useful if it is mine or if it relates to

my problem and it is taking up resources otherwise". In this second

viewpoint the data base becomes more inverted and in some respects similar

to a management information system.

42



A typical management information system requires that the user be

able to insert, move, and retrieve information. Hence any data manipu-

lation algorithm must have ways of finding inverses and must necessarily

be cumbersome. The usual approach is to use some variation of tree and

pointer algorithms, sometimes in conjuction with an indexed or table

lookup procedure where a new table is written for inverse operations.

These are space and time consuming operations. See Reference [14] for

a complete discussion of such strategies. The problem is complicated by

the fact that many of NASA's requirements are unique.

If it is the goal that the user can browse and retrieve information

from large data bases on-line, then we note that the experimenter never

inserts new information into the original file. Similarly, the data base

has the unique property that new information is only appended to it but

never inserted. In a sense this is not quite true. For example orbital/

attitude data may be inserted later because it is not available at the

time of writing the (on-line) data base. However, the volume is usually

small compared to the rest of the data. In such a case the space for the

pointer chains can be provided for most of the stored information then

the space can be reserved at the initial storage time and the data base

then behaves as though no insertions are made. Attempted retrieval

would only indicate that the information is unavailable. This property

allows for very powerful retrieval algorithms which will not be un-

necessarily complex. Because an inverse operation is never necessary,

the information in the data base can be compressed, enhanced, or only

certain features extracted without any loss in generality but with the

43



corresponding advantage of having to maintain a smaller data-base then

the case where a more general data structure is required.

Certain problems must always be considered in designing a data base

system. We will attempt to touch on most of these problems in the follow-

ing disucssion:

1) How should the data be stored? Should the data be sequential,

linked, or indexed or in what combination? Are there better ways of

storing data? Do we assume that data will always be physically stored

as a string? Are inverses necessary? Is decoding and its inverse en-

coding necessary? Must we worry about inverse operations for feature

detection, compression, and enhancement?

2) How should the system look to the user? What primitives must

he have available to him? What type of language should the user have to

learn? Is the language easy to learn and yet is it powerful? Does it

have or can the user easily create all the features that he would need?

3) How should the data be manipulated? What algorithms must be

implemented into hardware? Software? Are these algorithms independent

of how the data is stored?

Questions under 1 are answered in part by the use of the array as

a means of adapting the data base to the user without expending a great

deal of effort in inverses. For example in an ERTS data base situation

a user might be interested in:

MOST RECENT PICTURE AT LONGITUDE X AND LATITUDE Y WITH LESS THAT

1% CLOUD COVER

One can imagine that if the array model has dimensions for longitude,

44



latitude and time, the need for an associative search is less. However

if a request is for

ALL FRAMES SHOWING SHORE LINES OF LAKES LARGER THAN 20 SQUARE MILES,

then the search is bound to be difficult because the data sought is

associated with some search criteria applied to the data values. How-

ever if the search can be bounded (possibly by inference) the task is

reduced.

Questions 2 and 3 relate to requests such as the above. Further,

languages such as GOTRAN [8] or the processing language suggested by

Broglio [9] are useful but are at the other end of the problem.

While this effort is too restricted to presume to design a user

query language, the following philosophy should prevail. The system

must be oriented to the human user who should be able to exam*ne the

contents of the file without having the need to know how the machine

manipulates or stores the data. This comment is expanded as follows:

1) A user should be able to examine a file without knowing its

structure. The user should never have to worry about differentiating

between a scalar, vector, or array; he also should never have to worry

about how the data is physically stored.

2) A user should be able to examine a file without knowing its

representation. A user should never have to worry about things like:

Does an element represent character? Numeric (Boolean, integer, real)?

3) The file should be presented to the user in a form he normally

expects to see it. That is if a particular file is usually thought of

as being an array, it should be presented to the user as that array

45



rather than as its ravel.

4) Even though it is not achievable, the system should be designed

to try to be all things to all users. Therefore the system should have

built in defaults which can be overridden by different users with differ-

ent experience and different authorization. For example an inexperienced

user would like the convenience of working in a question-answer mode;

and experience user would find such a system too much of a nuisance and

would rather type his instructions directly.

5) The language should have a facility for report generation,

representing and restructuring the file in any desired form for either

visual representation or for storage in another medium.

The following characteristics are probably desirable:

1) Each command sequence shall normally be parsed, incrementally

compiled, and executed after each carriage-return. Sequence of commands

should be allowed to be collected for execution.

2) No user defined iterations or recurrsions should be allowed,

but enough power should be included that this is not restrictive.

The language must be mathematically sound; the language should

essentailly be a set-relational language that will manipulate actual

data only at the very end to eliminate excess number crunching. The

language must have the following features and primitives:

1) Set Definer: The user should be able to define symbols.

SetA c Jim, Bob, Mary

SetB c "All mountains over 3 miles"

SetC c SetA, Jane

46



2) Set Compressor: Sets should automatically be compressed and

stored to save storage and time.

(A B 5 B 5 5)- -(A B 5)

3) Symbol/Boolean/Relational/Functional/Group/Logical Manipulators:

This should be automatic

-~(~A U B) - A n B

4) Precedence of Operations: One is tempted to require that any

expression must be automatically be interpretted to have natural pre-

cedence.

x before +

~ applied only to symbol next to it unless overridden by use of

parentheses

The difficulty is that for many proposed functions precedence is

arbitrary. Hence we suggest a scheme similar to that of APL.

5) Symbol Evaluator: Expressions should be automatically evaluated

to its simplest form.

A u B - + Jim, Bob, Mary, Jane

A c C - - TRUE

6) Primitive Operations: The language must have at least the

following primitive operations:

Logical: All, n, u, ', c, -, <, >, =

Arithmetic: +, -, x,

7) New Operation-Assigner: The user should be able to define new

operations.

A E B <-- All - An B

47



8) Number-Assigner: The user should be able to assign dimensioned

numbers.

Bob - 3.63 inches

9) Locator-(Feature-Detector): The user should be able to describe

his data.

All lakes over 2 miles wide

10) Number/Arithmetic Manipulator: The machine should attempt to

optimize by simplification at the source.

A+B - B A

Note the usefulness of this if B - 110E6

11) Conversion Declaration: The user should be able to define his

own conversions that the system would automatically use.

12 in. E + 1 ft.

12) Number Converter-Calculator: Automatic conversion of dimensioned

numbers. Whenever conversion has been defined.

1.5 ft. x 2 in. + + in feet

36 sq. in. - +

0.25 sq. ft.

13) Report-Generator: Printing should automatically be done in a

way that the user would normally expect to see it. Control is placed

in the hands of the user allowing a variety of formatting.

48



5.0 IMPLEMENTATION CONSIDERATIONS

We have assumed that input and storage processing are done as

current plans and practice require. The data is assumed to be placed

in the array model format with whatever modifications required in the

last (frame stream) dimension to accommodate packing of the different

sized formats that may exist for encoding the experimental data. A

further requirement is that the data is aligned on machine addressing

boundaries.

Finally, enough low order coordinate dimensions are introduced to

strike a balance between making the user requests easier to fit into

the array indexing scheme and expanding the storage requirements due to

holes in the array.

To illustrate this last trade-off consider the data collected by

ERTS. Since the data relates to positions on the surface of the earth,

it is reasonable to introduce the coordinate indices of longitude and

latitude as two dimensions. However, since the data collected over any

given intersecting band of longitude and latitude is small relative 
to

the entire volume of data, the array model will have holes in those

dimensions. Moreover, the areas are not of equal size (even in approxi-

mation); there is surely more data to be collected over North America

than over the middle of the ocean.

Still, the use of the array model suggests a number of considerations

in implementations; and while the extent of 
this study is not sufficient

to allow a full investigation, a number of points 
should be noted.

The alignment on addressing boundaries is a requirement which

49



expands the storage space needed in order to make demand decommutation

more tactable. A computer capable of addressing to the bit level will

remove the need for excess backing store overhead. Also there is likely

to be some degree of variability if the bit lengths of the experimental

data over a collection of satellites. Thus a computer which is bit

addressable and deals with bit vector lengths over a reasonable range

would be advantageous. A structure such as the Burroughs B1700 supports

requirements such as these.

The indexing routines as explained previously are easily implemented

in microcode. The same is true for the array modifications introduced

to handle the different number of bits needed to encode the various

experiments data. A great deal of the overhead which would be associated

with an essentially interpretive command structure on an interactive

system may be absorbed in microcoded routines.

The requirements indicate that a (collection of) mini computers

can be configured in a (multi-) processing system for this problem.

The bottleneck is then the data base channel.

Virtual memory using a hardware supported paging mechanism is not

necessarily mandated by the considerations undertaken here. When in-

dexing in the array model takes place, several pieces of information

are known. The size of the result is known before the values are

fetched. The locations of the values can be determined from the indices

during the analysis phase of indexing and the sequence for fetching

the data from backing store is known and can be optimized. As each

segment of backing store data is accessed to obtain the required data

50



the space can be returned to a buffer area. Thus, if the address space

is large enough to hold the data base, the indexed array model permits

a variety of mapping mechanisms.

Finally, it should be pointed out that in data volumes of the

sort considered in this report there is a high channel bandwidth re-

quired if the following all hold: (a) output decommutation is on a

demand bases (b) data specified is scattered through significant

fraction of the data base, and (c) only a small portion of each segment

(such as a frame) is required. Under such conditions even if the data

can be located easily within the segment, the volume still causes

problems. An appreciable number of these units must be brought from

storage and one segment read request rapidly follows another since

there is little work to be done on each.

Such activity on demand precludes increasing the processing ef-

ficiency by dealing with all requests relating to each segment. Vector

machines such as Control Data's STAR or Texas Instruments ASC directly

confront such large data movement problems. In fact the kernels en-

countered in the array indexing model introduced here, where the structure

is mapped onto linear address space and within such a vector appropriate

pieces of data occur at regular intervals, are well suited to vector

oriented pipelining. While a great deal of data is moved, the system

knows the amounts and logical locations of the pages and hardware

mechanisms can continue to fetch pages until main storage is filled.

Since there is usually an assumption that a small portion of a page is

extracted, page activity soon exhausts a page making it a candidate for

51



release by task A since it will not be needed again by A (although task)

B may require the same data, causing problems). Even under such circum-

stances it is sometimes more advantageous to pass over the data twice,

once testing and marking the data and the second time actually selecting

it by compression. Some of the effects of using vector oriented

machines are discussed by J. L. Owens [15]. While the details of his

examinations can not be related precisely to the spacecraft data

problem, the mapping of large sets of data onto linear representations

and treating the results as vectors, does apply.

Thus, it seems to be quite likely that not only does the data

array appear to be a useful one for spacecraft data but also a vector

pipelined machine architecture for such problems may be a natural choice.

52



References

1. APL\360 Users Manual, A. D. Falkoff and K. E. Iverson, IBM Corp.,

GH20-0683-1, 2nd Edition, March, 1970.

2. APL\360 Reference Manual, S. Pakin Science Research Associates,

2nd Edition, 1972.

3. APL\360 An Interactive Approach, L. I. Gilman and A. J. Rose,

J. Wiley and Sons, 1970.

4. APL A Short Course, S. Pakin, Prentice-Hall, 1973.

5. ADP Application Study (Feasibility Study)for A Central Data Handling

Facility and Associated Remote Terminals for Atmospheric Explorer,

C, D, and E, Goddard Space Flight Center, Greenbelt, MD, September,
1971.

6. Telemetry On-Line Processing System (TELOPS). ADP Feasibility Study,

September, 1971, Informatics, Inc., TR-71-1500-05 for GSFC under NASA

Contract NAS5-20240.

7. Telemetry On-Line Processing System (TELOPS) System Specifications,

November, 1971, Informatics, Inc., TR-71-1500-07 for GSFC under NASA

Contract NAS5-20240.

8. The Data Reduction Laboratory Reference Manual, B. A. Walton,

J. J. Quann, F. A. Keipert, January, 1969, Goddard Space Flight Center,

Greenbelt, MD, Document X-565-69-56

9. A New Approach to Telemetry Data Processing, Carlo J. Broglio, May,

1973, Goddard Space Flight Center, Greenbelt, MD. Document

X-522-73-135 (Ph.D. Dissertation, University of Maryland).

10. An APL Machine, Philip S. Abrams, Ph.D. Dissertation, Stanford

University, 1970 (SLAC Report 114, February, 1970, Stanford Linear

Accelerator Center).

11. "Efficient Evaluation of Array Subscripts of Arrays", A. Hassitt and

L. E. Lyon, IBM Journal of Research and Development, 16, 1 (January,

1972) pp. 45-57.

12. "Data Structures that Generalize Rectangular Arrays", Samuel A. Hoffman,
AFIPS Joint Computer Conference, Spring 1962, pp. 325-333.

53



13. "On a Storage Mapping Function for Data Structures", Phillip Deuel,
Communications of the Association for Computing Machinery, 9, 5
(May, 1966) pp. 344-347.

14. File Structures for On-Line Systems, David Lefkovitz, Spartan Press,
1969.

15. "The Influence of Machine Organization on Algorithms", J. L. Owens,
in Complexity of Sequential and Parallel Numerical Algorithms,
J. F. Traub, Ed., Academic Press, 1973.

54


